Carl Friedrich Gauss nació en la ciudad de Brunswick, Alemania, el 30 de Abril de 1777. Nació en una familia muy pobre, su abuelo era un humilde jardinero de Brunswick. Nunca pudo superar la espantosa miseria que siempre cargo.
De pequeño Gauss fue respetuoso y obediente, y aunque después nunca critico a su padre por ser tan violento y rudo, poco después de que Gauss cumpliera 30 años su padre murió.
Desde muy pequeño Gauss mostró su talento para los números y para el lenguaje. Aprendió a leer solo, y sin que nadie lo ayudara aprendió muy rápido la aritmética desde muy pequeño. A los 7 años ingreso a la escuela primaria en su natal Brunswick. Era una escuela con disciplina medieval, regida por un tal Buttner que tenia aterrorizados a los alumnos con sus métodos de enseñanza. De cualquiera manera en ese lugar fue donde el pequeño Gauss comenzó a abrirse camino y a darse a conocer en ámbitos más amplios.
Una mañana en un salón de clases. El profesor, ante un grupo de niños de alrededor de 10 años de edad, estaba molesto por algún mal comportamiento del grupo y les puso un problema en el pizarrón que según el les tomaría un buen rato terminar; así, de paso, podría descansar.
En esos tiempos los niños llevaban una pequeña pizarra en la cual hacían sus ejercicios. Y el profesor dijo que mientras fueran acabando pusieran las pizarras en su escritorio para que luego las revisara.
El problema consistía en sumar los primeros cien números enteros, es decir, encontrar la suma de todos los números del 1 al 100. A los pocos segundos de haber planteado el problema se levantó un niño y deposito su pizarra sobre el escritorio del maestro. Éste, convencido de que aquel niño no quería trabajar, ni se molestó en ver el resultado; prefirió esperar a que todos terminaran.
Un poco más de media hora después comenzaron a levantarse los demás niños para dejar su pizarra, hasta que finalmente todo el grupo termino.
Para sorpresa del profesor de todo los resultados el único correcto era el del muchacho, mando a llamar al chico y le pregunto si estaba seguro de su resultado y como lo había encontrado tan rápido, el niño respondió: "Mire maestro, antes de empezar a sumar mecánicamente los 100 primeros números me di cuenta que si sumaba el primero y el último obtenía 101; al sumar el segundo y el penúltimo también se obtiene 101, al igual de sumar el tercero con el antepenúltimo, y así sucesivamente hasta llegar hasta los de los números centrales que son 50 y 51 que también suman 101. Entonces lo que hice fue multiplicar 101* 50 para obtener mi resultado de 5.050." En esa época ya se habían descubierto procedimientos para hacer sumas y otras operaciones con series de números arbitrariamente grandes. Lo sorprendente del caso es que un niño de 10 años se diera cuenta de cómo hacerlo.
Fuente: Wikipedia